Facile crystallization of Escherichia coli ketol-acid reductoisomerase.
نویسندگان
چکیده
Ketol-acid reductoisomerase (EC 1.1.1.86) catalyses the second reaction in the biosynthesis of branched-chain amino acids. The reaction involves an Mg2+ -dependent alkyl migration followed by an NADPH-dependent reduction of the 2-keto group. Here, the crystallization of the Escherichia coli enzyme is reported. A form with a C-terminal hexahistidine tag could be crystallized under 18 different conditions in the absence of NADPH or Mg2+ and a further six crystallization conditions were identified with one or both ligands. With the hexahistidine tag on the N-terminus, 20 crystallization conditions were found, some of which required the presence of NADPH, NADP+, Mg2+ or a combination of ligands. Finally, the selenomethionine-substituted enzyme with the N-terminal tag crystallized under 15 conditions. Thus, the enzyme is remarkably easy to crystallize. Most of the crystals diffract poorly but several data sets were collected at better than 3.2 A resolution; attempts to phase them are currently in progress.
منابع مشابه
Purified recombinant Escherichia coli ketol-acid reductoisomerase is unsuitable for use in a coupled assay of acetohydroxyacid synthase activity due to an unexpected side reaction.
Ketol-acid reductoisomerase (EC 1.1.1.86) catalyzes the conversion of 2-aceto-2-hydroxyacids to 2-keto-3-hydroxyacids and their subsequent reduction by NADPH to 2,3-dihydroxyacids. The gene encoding the Escherichia coli enzyme was cloned and expressed as a hexahistidine-tagged fusion protein and the recombinant enzyme purified by metal-ligand affinity chromatography. The pure enzyme was tested ...
متن کاملProteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli.
The factor-for-inversion stimulation protein (Fis) is a global regulatory protein in Escherichia coli that activates ribosomal RNA (rRNA) transcription by binding to three upstream activation sites of the rRNA promoter and enhances transcription 5- to 10-fold in vivo. Fis overexpression results in different effects on cell growth depending on nutrient conditions. Differential proteome analysis ...
متن کاملEngineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli.
2-methylpropan-1-ol (isobutanol) is a leading candidate biofuel for the replacement or supplementation of current fossil fuels. Recent work has demonstrated glucose to isobutanol conversion through a modified amino acid pathway in a recombinant organism. Although anaerobic conditions are required for an economically competitive process, only aerobic isobutanol production has been feasible due t...
متن کاملGeneral approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH.
To date, efforts to switch the cofactor specificity of oxidoreductases from nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NADH) have been made on a case-by-case basis with varying degrees of success. Here we present a straightforward recipe for altering the cofactor specificity of a class of NADPH-dependent oxidoreductases, the ketol-acid reductoisome...
متن کاملProbing the mechanism of the bifunctional enzyme ketol-acid reductoisomerase by site-directed mutagenesis of the active site.
Ketol-acid reductoisomerase (EC 1.1.1.86) is involved in the biosynthesis of the branched-chain amino acids. It is a bifunctional enzyme that catalyzes two quite different reactions at a common active site; an isomerization consisting of an alkyl migration, followed by an NADPH-dependent reduction of a 2-ketoacid. The 2-ketoacid formed by the alkyl migration is not released. Using the pure reco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 60 Pt 8 شماره
صفحات -
تاریخ انتشار 2004